On Karush-kuhn-tucker Points for a Smoothing Method in Semi-infinite Optimization *1)
نویسندگان
چکیده
We study the smoothing method for the solution of generalized semi-infinite optimization problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769–788). It is shown that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to a Karush-Kuhn-Tucker point of the original problem, as could be expected from results in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with equilibrium constraints, Math. Program., 85(1999), pp. 107–134). Instead, they might merely converge to a Fritz John point. We give, however, different additional assumptions which guarantee convergence to Karush-Kuhn-Tucker points. Mathematics subject classification: 90C34, 90C25, 49M37, 65K05.
منابع مشابه
Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملSolving semi-infinite programs by smoothing projected gradient method
In this paper, we study a semi-infinite programming (SIP) problem with a convex set constraint. Using the value function of the lower level problem, we reformulate SIP problem as a nonsmooth optimization problem. Using the theory of nonsmooth Lagrange multiplier rules and Danskin’s theorem, we present constraint qualifications and necessary optimality conditions. We propose a new numerical meth...
متن کاملKarush-Kuhn-Tuker Type Conditions for Optimality of Non-Smooth Multiobjective Semi-Infinite Programming
Abstract In this paper, for a nonsmooth semi-infinite multiobjective programming with locally Lipschitz data, some weak and strong Karush-KuhnTucker type optimality conditions are derived. The necessary conditions are proposed under a constraint qualification, and the sufficient conditions are explored under assumption of generalized invexity. All results are expressed in terms of Clarke subdif...
متن کاملε-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions
Approximate optimality conditions for a class of nonconvex semi-infinite programs involving support functions are given. The objective function and the constraint functions are locally Lipschitz functions on n . By using a Karush-Kuhn-Tucker KKT condition, we deduce a necessary optimality condition for local approximate solutions. Then, generalized KKT conditions for the problems are proposed. ...
متن کاملComposite semi - infinite optimization
Abstract: We consider a semi-infinite optimization problem in Banach spaces, where both the objective functional and the constraint operator are compositions of convex nonsmooth mappings and differentiable mappings. We derive necessary optimality conditions for these problems. Finally, we apply these results to nonconvex stochastic optimization problems with stochastic dominance constraints, ge...
متن کامل